






havioral resistance where resistant mosquitoes lose their resistance over time, resistance to insecticides can be

permanent. That is once a mosquito becomes resistant, it maintains this status until death. This is the case with

metabolic and cuticle resistance [41–43]. Hence, we consider three slightly simplified versions of the model: 1)

The case in which there is no transition between the sensitive and resistant mosquito classes (σr = σs = 0). That

is, we are assuming that resistance is acquired only through mosquito-recruitment and is permanent (Fig. 7(b)).

2) The case in which resistance is permanent and acquired both through mosquito recruitment and adult sensitive

mosquitoes becoming resistant, i.e., σr = 0, σs 6= 0 (Fig. 7(c)). 3) The case in which resistance is not permanent

and acquired only through mosquito recruitment, i.e., σr 6= 0, σs = 0 (Fig. 7(d)). For the case in which resistance

is permanent and acquired only through mosquito recruitment (Fig. 7(b)), when ITN efficacy is 70%, 80%, 90%, or

100% approximately 98%, 86%, 76% or 69% ITN coverage, respectively, is required to contain the disease. How-

ever, for ITN efficacy below 68% even full ITN coverage might not be enough for containment. For the case in

which resistance is permanent and acquired both through mosquito recruitment and transition of mosquitoes from

the sensitive to the resistant compartmental class (Fig. 7(c)), when ITN efficacy is 90%, or 100% approximately

93% or 84% ITN coverage, respectively, is required to contain the disease. However, for ITN efficacies below

84% even full ITN coverage might not be enough for containment. For the case in which resistance is not per-

manent and only through mosquito recruitment (Fig. 7(d)), when ITN efficacy is 70%, 80%, 90%, or 100% about

90%, 79%, 70%, or 63% ITN coverage, respectively, is required to contain the disease. But for ITN efficacies

below 63% even full ITN coverage might not be enough for containment.

Figure 7: Numerical simulations of the basic reproduction number R0, against ITN coverage b0, illustrat-
ing insecticide-impregnated bed-net coverage levels required for bringing malaria under control for four val-
ues of insecticide-impregnated bed-net efficacy (ε) when mosquito resistant to insecticides is permanent or non-
permanent. (a) Mosquito resistance to insecticides is not permanent and acquired through mosquito resistant and
through transition of mosquitoes occurring at rate σs 6= 0. (b) Mosquito resistance is permanent and is only acquired
through mosquito recruitment. (c) Resistance is permanent and acquired through mosquito recruitment and adult
sensitive mosquito transition. (d) Resistance is not permanent and is acquired only through mosquito-recruitment.
Other parameters used for the simulations are presented in Table 1.

Furthermore, we investigate the ITN coverage levels required for disease containment for different maximum

mosquito biting rates, βmaxhr and βmaxhs (Fig. 8(a) and (b)), ITN-induced mosquito mortality rates, µ1
r and µ1

s,
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(Fig. 8(c) and (d)) and resistance acquisition and loss rates, σs and σr, respectively, (Fig. 8(e) and (f)). When either

the sensitive or resistant mosquitoes bite a lot, even 100% ITN coverage might not be enough to contain malaria.

However, when either sensitive or resistant mosquitoes do not bite a lot, there is a threshold level of ITN coverage

that might be enough to contain the disease. For example, if sensitive mosquitoes do not bite, while the biting rate

of resistant mosquitoes is 0.5 per day, about 75% ITN coverage with efficacy of 90% is required to contain the

disease (Fig. 8 (b)). Insecticide treated nets must be complemented with other control measures if their efficacy is

below 70%.

Figure 8: Numerical simulation results of the basic reproduction number R0, against ITN coverage b0, illustrating
various insecticide-impregnated bed-net coverage levels required for bringing malaria under control for four values
of (a)-(b) the maximaum biting rates of resistant and sensitive mosquitoes (βmaxhr and βmaxhs , respectively), (c)-
(d) insecticide-induced mortality rates of resistant and sensitive mosquitoes (µ1

r and µsr),and (e)-(f) the resistant
development and loss rates for mosquitoes (σr and σs, respectively). Other parameters used for the simulations are
presented in Table 1.

Our analysis also shows that if the sensitive mosquitoes do not bite humans or have a very low biting rate, a higher

ITN coverage level is required than when the biting rate of resistant mosquitoes is low. For example, when ITN

efficacy is 90% and the biting rate of sensitive mosquitoes is 0.0 or 0.5 per day, about 74% or 85% ITN coverage,

respectively, is required to contain malaria (Fig. 8 (b)), while if the biting rate of resistant mosquitoes is 0 or 0.5

per day, approximately 50% or 77% ITN coverage, respectively, is required to get rid of malaria (Fig. 8 (a)). On

the other hand, when ITNs do not kill sensitive or resistant mosquitoes that land on them, over 90% ITN coverage
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is required for containing malaria (Fig. 8 (c) and (d)). However, when ITNs kill mosquitoes that land on them,

over 82% ITN coverage is required for eradication if the respective ITN killing rates for sensitive and resistant

mosquitoes are µ1
r = µ1

s = 1/14 ≈ 0.071. If the killing ability of ITNs is stronger, e.g., µ1
r = µ1

s = 1/7 ≈ 0.143,

then less ITN coverage (approximately 75%) is required for malaria containment. When resistance to insecticides

is permanent, about 93% ITN coverage is required (Fig. 8 (e)). However, when resistant mosquitoes lose their

resistance over time at respective rates 0.5, 1.0, or 5.0 per day, approximately 85%, 81%, or 73% ITN coverage

is required for eliminating malaria (Fig. 8 (e)). When sensitive mosquitoes become resistant at respective rates

0.0, 0.5, 1.0, or 5.0 per day, about 70%, 84%, 87%, or 92% ITN coverage is required for eliminating malaria (Fig. 8

(f)).

In the next set of results (Figs. 9-11), we present heat maps to demonstrate the impact of ITN coverage and one

other parameter, e.g., ITN efficacy, maximum biting rate of mosquitoes, development and loss rates of resistance,

etc., on two measures of disease intensity–the basic reproduction number R0 and the equilibrium infectious human

populations, I∗h. Similar results for the sensitive and resistant infectious mosquito populations and for the threshold

parameters R1 and R2 are presented in the online supplementary information (SI).
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Figure 9: Heat maps from numerical simulations illustrating the impact on the basic reproduction number R0,
of ITN coverage b0 and (a) ITN efficacy ε, (b) the maximum biting rate of resistant mosquitoes βmaxhr , (c) the
maximum biting rate of sensitive mosquitoes βmaxhs , (d) the recovery rate from infection γh, (e) the probability of
an infectious human infecting a susceptible mosquito phv, (f) the probability of infectious mosquito infecting a
susceptible human pvh, (g) the rate at which resistant mosquitoes lose resistance σr, (h) the rate at which sensitive
mosquitoes develop resistance σs, (i) the natural mortality rate of resistant mosquitoes µ0

r , (j) the natural mortality
rate of sensitive mosquitoes µ0

s, (k) the ITN-induced mortality rate of resistant mosquitoes µ1
r , and (l) the ITN-

induced mortality rate of sensitive mosquitoes µ1
s. The values of the other parameters are presented in Table 1.

Disease prevalence is highest in areas in which fewer people are protected by ITNs when the efficacy of ITNs is

very low (Fig. 9(a) and Fig. 10(a)). As observed earlier, when ITN efficacy is low, it becomes difficult to contain the

disease even if everybody uses ITNs for protection and vice versa. There will also be more infectious individuals

in the population when fewer humans are protected by ITNs and the human recovery rate from infection, the rate

at which resistant mosquitoes lose resistance, or the rate at which mosquitoes die (naturally or as a result of ITN-

use) is low, (Fig. 9(d), (g), (i)-(l) and Fig. 10(d), (g), (i)-(l)). On the other hand, disease prevalence is highest for

combinations of low ITN coverage and high mosquito biting rate, high probability of humans infecting mosquitoes,

when more sensitive mosquitoes develop resistance (Fig. 9(b), (c), (e), (h) and Fig. 10(b), (c), (e), (h)).
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Figure 10: Numerical simulation results illustrating the impact on the Infectious human population Ih, of ITN
coverage b0 and (a) ITN efficacy ε, (b) the maximum biting rate of resistant mosquitoes βmaxhr , (c) the maximum
biting rate of sensitive mosquitoes βmaxhs , (d) the recovery rate from infection γh, (e) the probability of an infectious
human infecting a susceptible mosquito phv, (f) the probability of infectious mosquito infecting a susceptible human
pvh, (g) the rate at which resistant mosquitoes lose resistance σr, (h) the rate at which sensitive mosquitoes develop
resistance σs, (i) the natural mortality rate of resistant mosquitoes µ0

r , (j) the natural mortality rate of sensitive
mosquitoes µ0

s, (k) the ITN-induced mortality rate of resistant mosquitoes µ1
r , and (l) the ITN-induced mortality

rate of sensitive mosquitoes µ1
s. Other parameters used for the simulations are presented in Table 1.

Figure 11 shows heat maps of the impact on the basic reproduction number (Fig. 11 (a)-(c)), the infectious

human population (Fig. 11 (d)-(f)), and the resistant infectious mosquito population (Fig. 11 (g)-(i)) for combina-

tions of the maximum biting rate of resistant mosquitoes and the development rate of resistance, the loss rate of

resistance, and the human recovery rate from infection. Disease prevalence is reduced, i.e., disease control is more

feasible in areas of low resistant mosquito populations or when resistant mosquitoes do not bite a lot (Fig. 11 (a),

(d), and (g)). Disease control is also feasible when more resistant mosquitoes lose their resistance or more humans

recover fast from infection. On the other hand, disease prevalence is high in areas with high resistant mosquito

densities (or when resistant mosquitoes bite more) and when more sensitive mosquitoes develop resistance.
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Figure 11: Numerical simulation results illustrating the effects on the basic reproduction number ((a)-(c)), the
infectious human population ((d)-(f)), and the resistant infectious mosquito population ((g)-(i)) for combinations of
the maximum biting rate of resistant mosquitoes βmaxhr the rate at which resistance is lost, σr ((a), (d), (g)), and the
development rate of resistance, σr ((b), (e), (h)), and the human recovery rate, σr ((c), (f), (i)). The other parameter
values used for the simulations are presented in Table 1.

5. Conclusion

Malaria prevalence in sub-Saharan Africa remains high, despite the tremendous success in control efforts

recorded over the past decade. For example, although some counties in Kenya boast of up to 80% personal pro-

tection through ITNs [95], malaria is still a major problem to the country. The gains of malaria control programs,

especially those related to vector control such as ITNs and IRS continue to be dampened by human behavior, nat-

ural deterioration in ITN efficacy, misuse, and resistance to insecticides developed by mosquitoes. In this study,

we developed and used a compartmental model to explore the interplay between ITN coverage, ITN efficacy, and

resistance exhibited by mosquitoes to insecticides in relation to malaria prevalence and control.

Our results indicate that ITN efficacy and coverage are very important parameters to pay attention to in the fight

against malaria. We found out that low ITN efficacy, or differentiated adherence to the use of ITNs has a negative

impact on the outcomes of malaria risk and control. We also found out that as long as mosquitoes are resistant to

insecticides, a combination of low ITN efficacy and high coverage, or high ITN efficacy and low coverage is not

enough for reducing malaria to appreciable levels. The situation is worst when resistance to insecticides is perma-

nent, i.e., for the case of metabolic or cuticle resistance. Hence, disease containment and possible elimination might

be impossible when either ITN coverage or ITN efficacy is low and ITNs are not complemented with other control
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measures such as IRS, treatment, eliminating mosquito breeding sites near homes, etc. This is consistent with

empirical studies in Ref. [15] indicating that both ITN efficacy and coverage for at risk populations must be high

in order to achieve the target reduction in malaria prevalence. However, our results indicate that high ITN efficacy

and moderately high ITN coverage and vice versa can be enough for appreciable reduction in malaria prevalence

under certain circumstances, e.g., when resistance is only through mosquito recruitment (either permanent or not)

or when more resistant mosquitoes are killed by ITNs. Consistent with common practice and public health rec-

ommendations, our results indicate that reducing mosquito populations, e.g., through killing, or eliminating their

breeding sites near human homes and preventing mosquito bites, especially in areas of high mosquito density and

high malaria prevalence are important for disease control. The fact that the model (2) exhibits a backward bifurca-

tion implies that the disease can no longer be contained just by bringing the basic reproduction number R0, slightly

below one. Instead, more and sustained control measures to reduce R0 below the new threshold value Rbb0 , are

required.

Finally, our analysis and results indicate that reducing resistance to insecticides is an important step towards

malaria elimination. In fact, the 1:1.6 optimal target for containing malaria, which in itself is a challenge to

attain [20] underestimates the effort required to contain malaria, especially in the presence of resistance. With

this coverage level, elimination is impossible even when ITN efficacy is very high, e.g., 90-100%, unless when

resistant mosquitoes do not bite, which at the moment is an impossibility. Therefore, designing control measures

that prevent the development of resistance, or that target and eliminate resistant mosquitoes will improve disease

control. This might involve using chemicals that mosquitoes might not easily resist or switching to new chemicals

that mosquitoes are not resistant to for treating both long lasting and regular bed-nets.

Limitations of the current study involve the assumptions that ITN efficacy over the useful life of ITNs as pre-

scribed by the World Health Organization (three years) and mosquito resistance to insecticides are both constant.

However, these quantities might change over time, with ITN efficacy waning and resistance to insecticides strength-

ening. In fact, the development of resistance occurs over time with the frequency of new resistant vectors increasing

with each generation. These limitations and other aspects of the malaria disease are currently under investigation

and will be reported in a separate paper.
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